

MIDDLE EAST CENTER FOR ECONOMICS AND FINANCE

A Low-Carbon Future for the Middle East and Central Asia: What are the Options

NOVEMBER 6, 2023

Gareth Anderson and Ling Zhu

Outline

Recent Trends in GHG Emissions in ME&CA

Climate Mitigation Pledges

Policy Options and Trade-offs

Greenhouse Gas Emissions in the ME&CA Region

Share in Annual Global CO2 Emissions (In percent)

Notes: GHG emissions exclude land use, land-use change, and forestry (LULUCF). AEs = Advanced Economies; EMDEs = Emerging and Developing Economies; ME&CA = Middle East, North Africa, and Central Asia. GHG emissions exclude land use, land-use change, and forestry (LULUCF).

Sources: Climate Watch Database for the GHG emissions, IMF staff calculations.

Greenhouse Gas Emissions in the ME&CA Region

GHG Emissions

(Index, 1990 = 100)

Contribution to ME&CA's GHG Emissions, 2019 (Percentage of total)

Sources: Climate Watch Database for the GHG emissions, IMF staff calculations.

Notes: GHG emissions exclude land use, land-use change, and forestry (LULUCF). AEs = Advanced Economies; EMDEs = Emerging and Developing Economies; ME&CA = Middle East, North Africa, and Central Asia. GHG emissions exclude land use, land-use change, and forestry (LULUCF).

Growth of Total GHG Emissions and Per Capita Emissions in ME&CA

Growth of GHG Emissions in ME&CA: 2000-19 (In percent)

GHG Emissions per capita in ME&CA: 2019 (In multiples of EMDE median)

Kaya Decomposition in the ME&CA Region, 2000-19

GHG Emissions =

 $Population \times \frac{Real \; GDP}{Population} \times$

 $\frac{\textit{Energy Consumption}}{\textit{Real GDP}} \times$

GHG Emissions Energy Consumption

ME&CA's Climate Mitigation Pledges

Notes: NDC stands for nationally determined contribution. BAU stands for business-as-usual scenario.

Emissions Reduction Targets in MENAP

MENAP

 IPCC: worldwide GHG emissions need to halve by 2030 for net emissions to reach zero by mid-century

Notes: UNDC stands for unconditional NDC mitigation targets; CNDC stands for conditional NDC mitigation targets.

IMF | Middle East and Central Asia Department

Per capita emission will have to decrease by 7 percent for the region to achieve CNDC

Mitigation Policy Options

Total CO2 emissions

A Fiscal Framework: MENAP

Note: RE stands for renewable energy.

Medium-Term Macroeconomic Trade-Offs: MENAP

	Change in cumulative RE (\$bn)	Change in ECR (\$ per m-ton CO2)	Change in 2030 GDP (percent)	Change in cumulative borrowing (% of GDP)
Scenario 1 (full FSR + \$8 carbon tax)	0	30	-5	-2
Scenario 2 (RE investment + 2/3 FSR)	770	18	4	12

Key Takeaways

1. Reaching the region's emissions targets is no mean feat

2. Fiscal policies could help, options include

- Raise effective price of fossil fuel
- Investments in renewables

3. These two policy options involve inter-generational trade-offs

4. Policymakers can choose a mix most suitable to the country

5. The key is to act now

Appendix

Emissions and Energy Prices in ME&CA: 2019

CPAT-BAUs are broadly in line with historical trends

ME&CA Emissions: 1990 – 2030

(In metric-ton CO2-equivalent)

CPAT v1.0 structure ('model of models')

 h_t^E = energy consumption rate (inverse of energy efficiency)

 p_t^E = price of energy

 v^E = (constant) <u>income</u> elasticity of demand for energyusing product

 $\eta^{UE} < 0$ = constant <u>price</u> elasticity of demand for use of energy-IMF | Middle Last and Centronsuming products wrt. unit energy costs $\alpha^E \ge 0 \stackrel{=}{\underset{(assume 1\%)}{=}} exogenous energy efficiency improvements}$

 η^{hE} = elasticity of <u>consumption rate</u> wrt. energy prices

...written another way

$$Y_{t}^{Ei} = Y_{t-1}^{Ei} \left(\left(1 + \alpha^{Ei} \right)^{-t} \right)^{1+\eta^{UEi}} \left(\frac{GDP_{t}}{GDP_{t-1}} \right)^{\nu^{Ei}} \left(\frac{p_{t}^{Ei}}{p_{t-1}^{Ei}} \right)^{\eta^{UEi} + \eta^{hEi} + \eta^{UEi} \eta^{hEi}}$$

$$\frac{\text{sectoral}}{\text{demand for}} = \frac{\text{previous}}{\text{year's year's x}} \times \frac{\text{exogenous technical}}{\text{change effect}} \times \frac{\text{growth effect}}{(\text{income})} \times \frac{\text{price effect}}{(\text{own price elasticity, endogenous})} \times \frac{\text{price effect}}{(\text{price effect})} \times \frac{\text{price effect}$$

- = exogenous energy efficiency improvements (e.g. assume 1% improvement per year) $\alpha^{\mathrm{E}i}$
- = (constant) income elasticity of demand for energyνEi using product
- p_t^{Ei} = price of energy
- = constant price elasticity of <u>demand</u> for energy-consuming products wrt. unit energy costs η^{UEi}
- η^{hEi} = elasticity of <u>consumption rate</u> (inverse of energy efficiency) wrt. energy prices

ME&CA BAU Emissions and NDC Targets

(Index; 2022=100)

CPAT projected 2030 BAU for Armenia and Uzbekistan are lower than their mitigation targets.

15 countries will need to cut emission from today's level to achieve their CNDC/UNDC

IMF | Middle East and Central Asia Department

Note: Excluding West Bank and Gaza due to lack of emission data. Sudan, Syria, and Libya does not have quantifiable mitigation targets.

Headline numbers: Medium-Term Macroeconomic Outcomes

(Changes relative to BAU)

		Change in cumulative RE (\$bn)	Change in ECR (\$ per m-ton CO2)	Change in 2030 GDP (percent)	Change in cumulative borrowing (% of GDP)
MENAP	Scenario 1 (full ESR + \$8 carbon tax)	0	30	-5	-2
	Scenario 2 (full ESR+ RE Investment)	406	23	-1	5
	Scenario 3 (RE investment + 2/3 ESR)	770	18	4	12
CCA	Scenario 1 (full ESR + \$4 carbon tax)	0	19	-5	-4
	Scenario 2 (full ESR+ RE Investment)	42	16	-2	3
	Scenario 3 (RE investment + 2/3 ESR)	114	13.5	7	15

Power sector mitigation targets

ME&CA Renewable Energy Targets

(In percent of total energy mix/ installed power capacity/ peak installed power)

MRT					///////////////////////////////////			
PAK					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
EGY				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i></i>			
GEO			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Current
MAR							2025	
UZB								2030
JOR							TT 2025	
ARE							<u>₩</u> 2035	
ARM		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	i					2040
IRQ	_////							₩ 2050
LBN	_/////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	//////					
DZA	•/////			///				
SAU	v //////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/////.		
BHR								
OMN	//////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	//////					
	0	10	20	30	40	50	60	70

The Climate Policy Assessment Tool (CPAT)

a spreadsheet-based 'model of models' covering 188 countries

aimed at **<u>economists</u>** in IMF, WB, finance ministries, planning & line ministries

allows rapid estimation of **<u>multiple economic and non-economic</u>** <u>**effects**</u> of climate mitigation policies such as carbon pricing and fossil fuel subsidy reform:

- energy & emissions energy consumption, global pollutants (GHGs), local pollutants (PM2.5, NOx, SO2, NMVOCs)
- macroeconomic GDP, revenues
- distributional impacts effects of tax and expenditures across income distribution and urban vs. rural
- development co-benefits reductions in mortality & morbidity from improved in air quality and road safety, reduced congestion

being developed jointly by IMF (FAD) & WB (SD & EFI)

can **help policymakers design, compare, and implement** carbon pricing reforms, to help them achieve their climate mitigation (Paris Agreement NDCs) and development goals (SDGs) jointly

